On the Relations between Eigenvalues and Eigenvectors for Matrices Resulting from Pre and Post Multiplication by the Transpose

By V. J. Law and R. H. Fariss

Abstract

Relationships between the eigenproblem associated with the matrices $A^{T} A$ and $A A^{T}$ are derived. If the larger problem is solved first, then the eigenvalues and eigenvectors associated with the smaller problem may easily be computed from the derived relationships.

Consider a nonsquare matrix A of rank m and of dimension $c \times d$. The product $A^{T} A$ is symmetric and positive semidefinite, and hence possesses an eigenvectoreigenvalue relationship of the form

$$
\begin{equation*}
S^{T}\left(A^{T} A\right) S=D, \tag{1}
\end{equation*}
$$

where S is a normal orthogonal matrix containing eigenvectors as columns, and D is a diagonal matrix containing eigenvalues as the diagonal elements. S and D, both of dimension $d \times d$, can be ordered so that any zero eigenvalues, resulting from $A^{T} A$ having excess dimension over the rank m, are at the bottom:

$$
D=\left[\begin{array}{c:c}
E & 0 \tag{2}\\
\hdashline & -- \\
0 & 0
\end{array}\right]
$$

where E is an $m \times m$ submatrix with nonzero diagonal elements. Correspondingly, the ordered S can be partitioned as

$$
\begin{equation*}
S=\left[S_{m}: S_{p}\right] \tag{3}
\end{equation*}
$$

so that the left-hand part S_{m} contains those eigenvectors associated with nonzero eigenvalues. Here $p=d-m$.

The positive semidefinite property of $A^{T} A$ assures that the diagonal elements of E are positive, hence E can be "square-rooted":

$$
\begin{equation*}
E=E^{1 / 2} E^{1 / 2} \tag{4}
\end{equation*}
$$

with $E^{1 / 2}$ being a diagonal matrix containing the square roots of the nonzero eigenvalues of $A^{T} A$.

The basic relationship (1) can be modified by premultiplication by S to give

$$
\begin{equation*}
\left(A^{T} A\right) S=S D \tag{5}
\end{equation*}
$$

If (5) is written in partitioned form, the following result becomes obviously valid:

$$
\begin{equation*}
A^{T} A S_{m}=S_{m} E \tag{6}
\end{equation*}
$$

Received December 11, 1967.

A normal orthogonal vector set can be constructed as follows: First substitute (4) into (6) and premultiply by $S_{m}{ }^{T}$, then premultiply and postmultiply by $E^{-1 / 2}$ to give

$$
\begin{equation*}
\left(A S_{m} E^{-1 / 2}\right)^{T}\left(A S_{m} E^{-1 / 2}\right)=I \tag{7}
\end{equation*}
$$

Equation (6) is a good starting point for investigating the eigenproblem of $A A^{T}$. Premultiplying (6) by A and postmultiplying that result by $E^{-1 / 2}$ gives

$$
\begin{equation*}
\left(A A^{T}\right)\left(A S_{m} E^{-1 / 2}\right)=A S_{m} E^{1 / 2}=\left(A S_{m} E^{-1 / 2}\right) E . \tag{8}
\end{equation*}
$$

Now, from (7) and (8) it follows that

$$
\begin{equation*}
\left(A S_{m} E^{-1 / 2}\right)^{T}\left(A A^{T}\right)\left(A S_{m} E^{-1 / 2}\right)=E . \tag{9}
\end{equation*}
$$

Now denote the eigenvector-eigenvalue relationship for $A A^{T}$ similarly to (1) as

$$
\begin{equation*}
R^{T}\left(A A^{T}\right) R=D^{*} \tag{10}
\end{equation*}
$$

where R and D^{*} are of dimension $c \times c$. Reorder R and D^{*} to obtain

$$
R=\left[R_{m} ; R_{q}\right] \quad \text { and } \quad D^{*}=\left[\begin{array}{c:c}
E^{*} & 0 \\
\hdashline \hdashline & 0 \\
0 & 0
\end{array}\right] .
$$

Here $q=c^{\prime}-m$ and E^{*} is an $m \times m$ diagonal submatrix.
The following properties are well known:
(1) $E^{*}=E$.
(2) R_{q} is arbitrary, subject to the restrictions $R_{q}{ }^{T} R_{m}=0, R_{q}{ }^{T} R_{q}=I$.

The important result of the paper is that

$$
\begin{equation*}
R_{m}=A S_{m} E^{-1 / 2} \tag{11}
\end{equation*}
$$

which follows from an examination of (9).
In conclusion, if the larger problem (i.e., the eigenproblem associated with $A^{T} A$) is solved first, then the complete eigenproblem associated with $A A^{T}$ may be computed by using the above-mentioned well-known properties together with the result (11).

Tulane University

New Orleans, Louisiana 70118
Monsanto Company
Springfield, Massachusetts 01101

